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1. INTRODUCTION

Define the Fourier transform of an integrable function f by

f� (!)=|
R

e&ix!f (x) dx

and the one of a compactly supported distribution by usual interpretation.
For any integer m�2, a compactly supported distribution , is said to be
m refinable if , satisfies the refinement equation

,= :
j # Z

cj ,(m } &j ) (1.1)

Article ID jath.1998.3303, available online at http:��www.idealibrary.com on

198
0021-9045�99 �30.00
Copyright � 1999 by Academic Press
All rights of reproduction in any form reserved.

* The authors thank two anonymous referees very much for their useful comments in
revising the paper. Also thanks to Professor A. Cohen and Professor A. Ron for their help.

- Current address: Department of Mathematics, National University of Singapore, 10 Kent
Ridge Crescent, Singapore 119260, Singapore.

� Both authors are partially supported by the National Natural Sciences Foundation of
China No. 69735020, the Doctoral Bases Promotion Foundation of National Educational
Commission of China No. 97033519, and the Zhejiang Provincial Sciences Foundation of
China No. 196083. The first author is also partially supported by the Tian Yuan Project of
the National Natural Sciences Foundation of China No. 19631080, and the Wavelets Strategic
Research Program, National University of Singapore, under a grant from the National
Science and Technology Board and the Ministry of Education, Singapore.



and ,� (0)=1, where the sequence [cj] j # Z satisfies � j # Z cj=m and cj{0 for
all but finitely many j # Z. In this paper, a refinable distribution means a
compactly supported distribution which is m refinable for some m�2.
Refinable distribution arises in many contexts, such as subdivision scheme
and construction of various wavelets (see for instance [1, 2, 5]). Typical
examples of refinable distributions are B-splines and Daubechies' scaling
functions.

Define the m symbol of the refinable distribution , in (1.1) by

Hm(z)=
1
m

:
j # Z

cj z j.

By taking the Fourier transform at each side of (1.1), we obtain

,� (!)=Hm(e&i!�m) ,� (!�m). (1.2)

From (1.2), we see that an m refinable distribution must be mr refinable
for all integers r�1. Furthermore its corresponding mr symbol is
>r&1

j=0 Hm(zm j
), where Hm is its m symbol. This motivates us to consider

the converse��whether a distribution which is mr refinable for all r�2 is
necessarily m refinable. In this paper, we discuss the following question
relating to an even stronger statement.

Problem 1. Let r and s be two relatively prime integers. Is it true that
a distribution which is both mr and ms refinable is necessarily m refinable?

A compactly supported distribution is said to be totally refinable if it is
m refinable for all m�2. Define B-spline Bk , k�0 by

B� k(!)=\1&e&i!

i! +
k

.

Then the Bk , k�0 are totally refinable. It motivates us to consider the
converse��whether B-splines are the only totally refinable distributions. In
this paper, we discuss the following question relating to an even stronger
statement.

Problem 2. For which class of integer pairs (m, n) is a compactly
supported distribution that is both m and n refinable necessarily essentially
a B-spline?

Recall that a compactly supported p refinable distribution is pr refinable.
Then a compactly supported distribution, which is both m and n refinable,
need not to be a B-spline if the integer pair (m, n) is ( pr, ps) for some
integers r, s�1 and p�2.
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Problem 2 is of interest by itself. In [3], Cohen et al. proved that
the smoothness and approximation order go hand-in-hand for a totally
refinable space. The reader refer [3] to the definition of totally refinable
spaces. In fact, the space spanned by the integer translates of a totally
refinable function is an important class of totally refinable spaces. So to
study Problem 2 is helpful to understand the totally refinable spaces. In
recent years, some authors have tried to understand when a refinable
distribution is essentially a B-spline. Lawton et al. proved in [6] that a
refinable piecewise polynomial is essentially a finite linear combination of
integer translates of a B-spline. In [9], the first named author showed that
a compactly supported distribution, which is piecewise smooth and m
refinable for some m�2, is essentially a B-spline.

In this paper, we give an affirmative answer to Problem 1 under some
minor restrictions on the refinable distribution and identify certain classes
of integer pairs (m, n) for the solution to Problem 2.

To state our results, we fix some terminologies. A compactly supported
distribution , is said to be linearly independent to its integer translates, or
linearly independent for short, if

:
j # Z

dj,( }&j )#0 on R implies dj=0, \j # Z.

We say that an integer pair (m, n) is of type I if there exist integers r, s�1
and p�2 such that m= pr and n= ps. For l�2, an integer pair (m, n) is
said to be of type l if it is not of type l&1 and there exist integers r i , si�0
and pi�2, i=1, 2, ..., l such that pi , 1�i�l are pairwise relatively prime,
m=> l

i=1 pri
i and n=> l

i=1 psi
i . For example (9, 27) is of type I, (12, 18) is

of type II and (22 } 3 } 5, 32 } 5)=(300, 45) is of type III. In this paper, we
prove the results that only involve integer pairs of type I, II, and III.

Theorem 1. Let r and s be two relatively prime integers, and let m�2
be an integer. Assume that the compactly supported distribution , is linearly
independent. Then , is both mr and ms refinable if and only if it is m
refinable.

The condition for the linear independence of , in Theorem 1 cannot be
left out. For example, the distribution , defined by

,� (!)=
ei!&1

i!
_

e2i!&2 cos(2?�m2) ei!+1
2&2 cos(2?�m2)

is mr refinable for all r�2, but not m refinable.
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Theorem 2. Let (m, n) be an integer pair of type II or of type III.
Assume that the compactly supported distribution , is linearly independent.
Then , is both m and n refinable if and only if there exist a B-spline Bk

and an integer s such that s(n&1)�(m&1) is still an integer and ,=
Bk( }&s�(m&1)).

We say that a Laurent polynomial P is m closed if P(zm)�P(z) is still a
Laurent polynomial. If the condition for the linear independence of , in
Theorem 2 is left out, then we have

Theorem 3. Let (m, n) be an integer pair of type II or of type III. Then
, is both m and n refinable if and only if there exists an integer s such that
s(n&1)�(m&1) is an integer, and a B-spline Bk and a sequence [dj] j # Z with
finite length such that (1&z)k � j # Z djz j is both m and n closed, and

,= :
j # Z

d jBk \ }&
s

m&1
& j+ .

From Theorem 3, it follows that a totally refinable distribution is a finite
linear combination of integer translates of a B-spline. So we believe that the
following assertion is true.

Conjecture. Let the integer pair (m, n) be not of type I. If a compactly
supported distribution is both m and n refinable, then it is essentially a
finite combination of the integer translates of a B-spline.

Let us briefly describe the ideas to prove our theorems. The proofs of
one direction follow from the facts that a B-spline is m refinable for all
m�2 and that an m refinable distribution is mr refinable for all integer
r�1. To give the proofs of another direction, we need two basic assertions.
The first one says that both m and n refinability of the distribution , is
equivalent to

Hm(zn) Hn(z)=Hn(zm) Hm(z)

on the corresponding m and n symbols Hm and Hn (see Lemma 1 for
precise statement). The second one says that a compactly supported
distribution, which is both m and n refinable, is also m�n refinable if it is
linearly independent and m�n�2 is still an integer (see Lemma 2 for
precise statement). Then we may use Lemma 2 to prove Theorem 1.

The first step to prove Theorem 2 is to simplify integer pairs in
Theorem 2 by Lemma 2. In fact it suffices to consider integer pairs (m, n)
with m and n being relatively prime, or satisfying m= pd and n=qd for
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some pairwise relatively prime integers p, q and d. The key step is to prove
that the corresponding m symbol Hm can be written as

Hm(z)=\ 1&zm

m&mz+
k P(zm)

P(z)

for some Laurent polynomial P with P(1)=1 (see Lemmas 3 and 4 for
precise statement). At last we show that the Laurent polynomial P above
equals zs for some integer s.

In order to prove Theorem 3, by Theorem 2 we only need to show that for
a both m and n refinable distribution ,, there exist a compactly supported
distribution ,1 and a sequence [d j] j # Z with finite length such that ,1

is linearly independent, both m and n refinable, and ,=� j # Z d j,1( }&j )
(see Lemma 7 for precise statement).

The paper is organized as follows. In Section 2, we give some basic asser-
tions and the proof of Theorem 1. Section 3 contains the proof of Theorem 2.
Theorem 3 is proved in Section 4.

2. PROOFS OF THEOREM 1

To prove our theorems, we need some lemmas.

Lemma 1. Let m and n�2 be two integers. If a compactly supported
distribution , is both m and n refinable, then the corresponding m symbol Hm

and n symbol Hn satisfy

Hm(zn) Hn(z)=Hn(zm) Hm(z). (2.1)

Conversely if Laurent polynomials Hm and Hn satisfy (2.1) and Hm(1)=
Hn(1)=1, then there exists a compactly supported distribution , such that it
is both m and n refinable, and Hm and Hn are the corresponding m and n
symbols respectively.

Proof. Let , be both m and n refinable. Then it follows from (1.2) that

,� (!)=Hm(e&i!�m) ,� \ !
m+=Hm(e&i!�m) Hn(e&i!�(mn)) ,� \ !

mn+
and

,� (!)=Hn(e&i!�n) ,� \!
n+=Hn(e&i!�n) Hm(e&i!�(mn)) ,� \ !

mn+ .
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Recall that ,� is a nonzero analytic function. Then

Hm(e&in!) Hn(e&i!)=Hn(e&im!) Hm(e&i!)

and (2.1) follows.
Let Hm and Hn satisfy (2.1) and Hm(1)=Hn(1)=1. Define

8(!)= `
�

j=1

Hm(e&i!�mj
). (2.2)

Then 8(0)=1. It is easy to show that the right hand side of (2.2) converges
uniformly on any compact set of the complex plane C. Hence 8(!) is an
analytic function. Furthermore there exists a constant C such that |8(!)|�
C(1+|!| )C eC |Im !|, where Im ! denotes the imaginary part of a complex
number !. Thus there exists a compactly supported distribution , by the
Paley�Wiener theorem such that 8=,� . Hence it remains to prove that ,
is both m and n refinable. Obviously , is m refinable by (2.2). To prove n
refinability of ,, we introduce an auxiliary function

g(!)=,� (n!)�,� (!)=8(n!)�8(!).

Obviously g is continuous at the origin and g(0)=1. By (2.1) and (2.2), we
get

g(!)=
Hm(e&in!�m) ,� (n!�m)

Hm(e&i!�m) ,� (!�m)
=

Hn(e&i!)
Hn(e&i!�m)

g \ !
m+ .

Hence

g(!)=
Hn(e&i!)

Hn(e&i!�mk
)

g \ !
mk+

for all k�1 and g(!)=Hn(e&i!) by letting k tend to infinity. This shows
that , is n refinable. By the procedure above, we see that Hm and Hn are
the m and n symbols of the refinable distribution , respectively. K

For z0 # C"[0], we say that a Laurent polynomial P has m symmetric
roots z0 if P(z0 |s

m)=0 for all 0�s�m&1, where |m=e2?i�m is the m th
root of unity. A Laurent polynomial P is said to have no m symmetric roots
if all z0 # C"[0] are not m symmetric roots of P.

Lemma 2. Let m and n be two integers such that m�n�2 is still an
integer. If , is linearly independent, and both m and n refinable, then , is m�n
refinable.
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Proof. Let Hm and Hn be the m and n symbol of the refinable distribu-
tion , respectively. Then Hn has no n symmetric roots and Hm has no m
symmetric roots by the linear independence of ,. By Lemma 1, we have

Hn(z) Hm(zn)=Hm(z) Hn(zm). (2.3)

Write

Hm(z)=H1, m(z) H2, m(zn)

such that H1, m has no n symmetric roots and H1, m(1)=1. Then all n sym-
metric roots of the left hand side of (2.3) are those of Hm(zn) and all n sym-
metric roots of the right hand side of (2.3) are those of H2, m(zn) Hn(zm).
Therefore by (2.3) we get

Hm(z)=H2, m(z) Hn(zm�n)

and

H1, m(z)=Hn(z).

Replacing Hn and Hm in (2.3) by the formulas above, we obtain

Hn(z) H2, m(zn)=H2, m(z) Hn(zm�n).

Hence Lemma 2 follows from Lemma 1 and the above formula of Hn and
H2, m . K

Proof of Theorem 1. Obviously it suffices to prove that , is m refinable
when , is mr and ms refinable. If r or s equals 1, then the assertion follows.
Inductively we assume that the assertion holds for all relatively prime
integers r�k and s�k. Now we prove the assertion when r�k+1 and
s�k+1 are relatively prime. Without loss of generality we assume r>s.
Set r$=r&s. Then r$�k, s�k, and r$ and s are also relatively prime.
Furthermore , is mr$=mr�ms refinable by Lemma 2. Thus , is m refinable
by the inductive assumption. Hence the assertion holds when r�k+1 and
s�k+1 are relatively prime. K

3. PROOF OF THEOREM 2

A Laurent polynomial P(z) is said to be a normalized polynomial if P(z)
is a polynomial and satisfies P(0){0 and P(1)=1. Denote the set of
all nonzero roots of a Laurent polynomial P, taking multiplicities into
account, by Z(P). If z0 is a root of multiplicity m, we may distinguish its
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repeated occurrence in some way, such as z0_1, z0_2, ..., z0_m. For
example,

Z(P)=[i_1, i_2, &i_1, &i_2]

when P(z)=z(z2+1)2. But we abandon such vigor and write simply

Z(P)=[i, i, &i, &i].

Then the cardinality of the above set of roots of the polynomial z(z2+1)2

is 4. For any natural number r, let Z(P)r be the set of all z r
0 with z0 # Z(P)

and Z(P)_Z(Q) be the set of all z0u0 with z0 # Z(P) and u0 # Z(Q). For
the above example, Z(P)2=[&1, &1, &1, &1] and Z(P)_[&1, 1]=
[i, i, i, i, &i, &i, &i, &i].

Lemma 3. Let m and n be relatively prime integers. If Hm has no m sym-
metric roots, Hn has no n symmetric roots, and Hm and Hn satisfy

Hm(z) Hn(zm)=Hn(z) Hm(zn),

then there exist a normalized polynomial P and an integer k�0 such that P
is m and n closed, and

Hm(z)=\ 1&zm

m&mz+
k P(zm)

P(z)
, Hn(z)=\1&zn

n&nz+
k P(zn)

P(z)
.

Proof. Let A(z) be the maximal common factor of Hm(z) and Hn(z)
with A(1)=1. Then

Q(z)=
A(z) Hn(zm)

Hn(z)
=

A(z) Hm(zn)
Hm(z)

is a polynomial by the assumption on Hm and Hn . Furthermore we have

Claim 1. Q(z) has no m symmetric roots.

On the contrary, there exists z0 # C such that Q(z0|s
m)=0 for all 0�s�

m&1. Observe that [|s
m ; 0�s�m&1]=[|sn

m ; 0�s�m&1] when m
and n are relatively prime. Then Hm(zn

0|s
m)=0 for all 0�s�m&1, which

contradicts to the assumption on Hm .
Similarly by the assumption on Hn we have

Claim 2. Q(z) has no n symmetric roots.

Thus it follows from Claims 1 and 2 that A(z)=1 and

Z(Hn)m=Z(Hn), Z(Hm)n=Z(Hm). (3.1)
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Write

Hn(z)=C `
z0 # Z(Hn)

(z&z0).

Then Hn(z)=C >z0 # Z(Hn) (z&zm
0 ) by (3.1) and

Q(z)= `
z0 # Z(Hn)

zm&zm
0

z&z0

= `
z0 # Z(Hn)

`
m&1

s=1

(z&z0|s
m).

Similarly we have

Q(z)= `
u0 # Z(Hm)

`
n&1

t=1

(z&u0 | t
n).

Hence we get

Z(Q)=Z(Hn)_[|s
m ; 1�s�m&1]=Z(Hm)_[|t

n ; 1�t�n&1]. (3.2)

By (3.1) and (3.2), we obtain

Z(Hm)_[1, 1, ..., 1]n&1=Z(Hn)n_[|s
m ; 1�s�m&1] (3.3)

and

Z(Hn)_[1, 1, ..., 1]m&1=Z(Hm)m_[| t
n ; 1�t�n&1] (3.4)

where [`0 , `0 , ..., `0]k is the set of all roots of (z&`0)k for `0 # C"[0]. Thus
we have

Claim 3. There exists a polynomial P1 such that Z(Hn)n=Z(P1)_
[1, 1, ..., 1]n&1 .

On the contrary, there exist z1 , z2 # Z(Hn)n and 1�s1�n&1 such that
z1=z2|s1

m by (3.3). Hence

[z1| s
m ; 0�s�m&1]/Z(Hn)n_[|s

m ; 1�s�m&1]

and Hm has m symmetric root z1 by (3.3), which contradicts the assump-
tion on Hm .

Combining (3.1), (3.3), and Claim 3, we obtain

Z(Hm)=Z(P1)_[|s
m ; 1�s�m&1] (3.5)

and

Z(P1)n_[|s
m ; 1�s�m&1]=Z(P1)_[|s

m ; 1�s�m&1].
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Furthermore we have

Claim 4. Z(P1)=Z(P1)n.

On the contrary, there exist z1 # Z(P1), z2 # Z(P1)n and 1�s1�m&1
such that z1=z2|s1

m . Hence Hm has m symmetric roots z1 by (3.1) and
(3.5), which contradicts the assumption on Hm .

Similarly by (3.1), (3.2), (3.4), and the assumption on Hn there exists a
polynomial P2 such that

{Z(Hn)=Z(P2)_[| t
n ; 1�t�n&1]

Z(P2)=Z(P2)m.
(3.6)

By (3.2), (3.5), and (3.6), we obtain

Z(P1)_[| t
n ; 1�t�n&1]_[|s

m ; 1�s�m&1]

=Z(P2)_[| t
n ; 1�t�n&1]_[| s

m ; 1�s�m&1].

Furthermore we have

Claim 5. Z(P1)=Z(P2).

On the contrary, there exist z1 # Z(P1), z2 # Z(P2), 0�s1�m&1 and
0�t1�n&1 such that (s1 , t1){(0, 0) and z1=z2|s1

m| t1
n . From (3.2), (3.5),

and (3.6), it follows that

Q(z1|s
m| t

n)=0, \1�s�m&1, 0�t�n&1

when s1=0,

Q(z1|s
m| t

n)=0, \0�s�m&1, 1�t�n&1

when t1=0 and

Q(z1|s
m| t

n)=0, \0�s�m&1, 0�t�n&1

when s1{0 and t1{0. Hence Q has m or n symmetric roots, which con-
tradicts Claims 1 and 2.

Write P1(z)=C(1&z)k P0(z) with P0(1)=1. Hence Lemma 3 follows by
(3.5), (3.6), Claims 4 and 5, and letting P=P0 . K

Lemma 4. Let p, q, d�2 be pairwise relatively prime integers, m= pd
and n=qd. Assume that the normalized polynomials Hm and Hn have no m
and n symmetric roots respectively. If Hn and Hn satisfy (2.1), then there
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exist a normalized polynomial P and an integer k�0 such that P is m and
n closed, and

Hm(z)=\ 1&zm

m&mz+
k P(zm)

P(z)
, Hn(z)=\1&zn

n&nz+
k P(zn)

P(z)
.

Obviously Lemma 4 follows from Lemmas 5 and 6 below.

Lemma 5. Let m, n, p, q, d, Hm , Hn be as in Lemma 4. If Hm and Hn

satisfy (2.1), then

{Hm(z)=Hm, 1(zd ) B(z)=Hm, 2(z) C(z p)
Hn(z)=Hn, 1(zd ) B(z)=Hn, 2(z) C(zq),

(3.7)

where B(z), C(z), and Hn, i (z), Hm, i (z), i=1, 2 are normalized polynomials.
Furthermore B(z) and C(z) have no d symmetric roots, Hm, i (z), i=1, 2 has
no p symmetric roots and Hn, i (z), i=1, 2 has no q symmetric roots.

Proof. Write

Hm(z)=Hm, 1(zd ) B1(z)=Hm, 2(z) C1(z p),

Hn(z)=Hn, 1(zd ) B2(z)=Hn, 2(z) C2(zq),

such that Hn, i (z), Hm, i (z), Bi (z), Ci (z), i=1, 2 are normalized polyno-
mials, and Bi (z), i=1, 2 has no d symmetric roots, Hm, 2(z) has no p sym-
metric roots, and Hn, 2(z) has no q symmetric roots. By the assumptions on
Hm and Hn we see that Ci (z), i=1, 2 has no d symmetric roots, Hm, 1(z)
has no p symmetric roots and Hn, 1(z) has no q symmetric roots. Thus it
suffices to prove that B1(z)=B2(z) and C1(z)=C2(z).

We first show that B1(z)=B2(z). By (2.1), we have

B1(z) Hm, 1(zd ) Hn(zdp)=B2(z) Hn, 1(zd ) Hm(zdq). (3.8)

It is easy to see that all d symmetric roots of the left hand side of (3.8) are
those of Hm, 1(zd ) Hn(zdp), and all d symmetric roots of the right hand side
of (3.8) are those of Hn, 1(zd ) Hm(zdq). Thus we have Z(B1)=Z(B2). Hence
from B1(0){0, B2(0){0, and B1(1)=B2(1), it follows that

B1(z)=B2(z).

Next we prove that C1(z)=C2(z). Obviously (2.1) can be written as

Hm(z) Hn, 2(zdp) C2(zdpq)=Hn(z) Hm, 2(zdq) C1(zdpq). (3.9)

Hence we have
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Claim 6. All dpq symmetric roots of the left hand side of (3.9) are those
of C2(zdpq).

On the contrary, there exists a complex number z0 such that

Hm(z0|u
dpq) Hn, 2(zdp

0 |u
q)=0, \0�u�dpq&1.

Hence

Hm(z0|s+tq
dpq ) Hn, 2(zdp

0 |s
q)=0, \0�s�q&1, 0�t�dp&1. (3.10)

Recall that Hn, 2(z) has no q symmetric roots. Therefore there exists 0�
s0�q&1 such that Hn, 2(zdp

0 |s0
q ){0. Hence Hm(z0|s0

spq| t
m)=0 for all 0�

t�m&1 by (3.10), which contradicts to the assumption on Hm .
Similarly we have

Claim 7. All dpq symmetric roots of the right hand side of (3.9) are
those of C1(zdpq).

Therefore by Claims 6 and 7 we have Z(C1)=Z(C2). Recall that Ci (z),
i=1, 2 are normalized polynomials. Then

C1(z)=C2(z).

Hence Lemma 5 follows by letting B(z)=B1(z) and C(z)=C1(z). K

Lemma 6. Let m, n, p, q, d and Hm(z), Hn(z), B(z), C(z), Hn, i (z),
Hm, i (z), i=1, 2 be as in Lemma 5. Then there exist normalized polynomials
Pi (z), i=0, 1, 2 and an integer k�0 such that

{
Hm, 1(z)=(1&z p)k�( p& pz)k_P1(z p)�P0(z),

(3.11)

Hm, 2(z)=(1&z p)k�( p& pz)k_P2(z p)�P1(z),
Hn, 1(z)=(1&zq)k�(q&qz)k_P1(zq)�P0(z),
Hn, 2(z)=(1&zq)k�(q&qz)k_P2(zq)�P1(z),

B(z)=(1&zd )k�(d&dz)k_P0(zd )�P1(z),
C(z)=(1&zd )k�(d&dz)k_P1(zd )�P2(z),

and P0(zd )�P1(z), P1(zd )�P2(z), P1(z p)�P0(z), P1(zq)�P0(z), P2(z p)�P1(z)
and P2(zq)�P1(z) are normalized polynomials.

Proof. By (3.7) and (3.8), we obtain

Hm, 1(zd ) B(z)=Hm, 2(z) C(z p),

Hn, 1(zd ) B(z)=Hn, 2(z) C(zq), (3.12)

Hm, 1(z) Hn, 2(z p)=Hn, 1(z) Hm, 2(zq).
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First we prove that

Z(Hm, 2)=Z(Hm, 1)q,

Z(Hm, 1)=Z(Hm, 2)d, (3.13)

Z(Hm, 1)=Z(Hm, 1)n,

and

Z(Hn, 2)=Z(Hn, 1) p,

Z(Hn, 1)=Z(Hn, 2)d, (3.14)

Z(Hn, 1)=Z(Hn, 1)m.

Since we can prove (3.14) by almost the same argument as the one of
(3.13), we only give the detail of the proof of (3.13) here. Let R3(z) be the
maximal common factor between Hm, 1(z) and Hn, 1(z) with R3(1)=1. Set

Q1(z)=
Hm, 2(zq) R3(z)

Hm, 1(z)
. (3.15)

Then Q1(z) is a normalized polynomial and

Q1(z)=
Hn, 2(z p) R3(z)

Hn, 1(z)
(3.16)

by (3.12). Furthermore we have

Claim 8. Q1(z) has no p symmetric roots.

On the contrary, there exists z0 # C such that Q1(z0 |s
p)=0 for all 0�

s� p&1. Thus Hm, 2(zq
0|sq

p )=0 for all 0�s� p&1 by (3.15). By computa-
tion, we have [|sq

p ; 0�s�p&1]=[|s
p ; 0�s�p&1]. Therefore Hm, 2(zq

0|s
p)

=0 for all 0�s� p&1, which contradicts the property of Hm, 2 .
Similarly by (3.16) and the property of Hn, 2 we have

Claim 9. Q1(z) has no q symmetric roots.

Thus it follows from (3.15), Claims 8 and 9 that

Z(Hm, 2)/Z(Hm, 1 �R3)q/Z(Hm, 1)q. (3.17)

Let R4(z) be the maximal common factor between B(z) and Hm, 2(z) with
R4(1)=1, and let

Q2(z)=
R4(z) Hm, 1(zd )

Hm, 2(z)
.
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Then Q2(z)=C(z p) R4(z)�B(z) is a polynomial by (3.12) and Q2(z) has no
p and d symmetric roots by the same argument as the one used in the proof
of (3.17). Therefore we get

Z(Hm, 1)/Z(Hm, 2 �R4)d/Z(Hm, 2)d. (3.18)

Combining (3.17) and (3.18), we get

Z(Hm, 2)/Z(Hm, 2)n. (3.19)

Observe that the sets at both sides of (3.19) have the same cardinality.
Then Z(Hm, 2)=Z(Hm, 2)n, Z(Hm, 1)=Z(Hm, 2)d and R3(z)=R4(z)=1 by
(3.17)�(3.19). Hence (3.13) follows.

By (3.15), (3.16), and R3(z)=1, we have

Q1(z)=
Hm, 2(zq)
Hm, 1(z)

=
Hn. 2(z p)
Hn, 1(z)

. (3.20)

By the same argument as the one used in the proof of Lemma 3 it follows
from (3.13) and (3.20) that

Z(Q1)=Z(Hm, 1)_[|s
q ; 1�s�q&1]=Z(Hn, 1)_[| t

p ; 1�t� p&1].

(3.21)

Hence by (3.13), (3.14), and (3.21) we obtain

{ Z(Hn, 1)_[1, 1, ..., 1]p&1=Z(Hm, 1)m_[|s
q ; 1�s�q&1]

Z(Hm, 1)_[1, 1, ..., 1]q&1=Z(Hn, 1)n_[| t
p ; 1�t� p&1].

(3.22)

Then by the same argument as the one used in the proof of Lemma 3, it
follows from (3.13), (3.14), (3.22) and the properties of Hm, 1 and Hn, 1 that
there exist polynomials P� 1 and P� 2 such that

{Z(Hm, 1)=Z(P� 1)_[|s
p ; 1�s� p&1]

Z(Hn, 1)=Z(P� 2)_[|t
q ; 1�t�q&1]

(3.23)

and

Z(P� 1)n=Z(P� 1), Z(P� 2)m=Z(P� 2). (3.24)

By (3.21) and (3.23), we have

Z(P� 1)_[| t
p ; 1�t� p&1]_[|s

q ; 1�s�q&1]

=Z(P� 2)_[| t
p ; 1�t� p&1]_[|s

q ; 1�s�q&1].
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Hence by the same argument as the one used in the proof of Lemma 3 it
follows from (3.20), Claims 8 and 9 that

Z(P� 1)=Z(P� 2). (3.25)

Write

{
>u: # Z(P� 1) (z&u:)=c1(z&1)k P0(z),

(3.26)
>u: # Z(P� 1) (z&u p

: )=c2(z&1)k P1(z),
>u: # Z(P� 1) (z&uq

:)=c3(z&1)k P1*(z),
>u: # Z(P� 1) (z&upq

: )=c4(z&1)k P2(z),

where k�0 and constants ci , 1�i�4 are chosen such that Pi , i=0, 1, 2
and P1* are normalized polynomials. Here the same integer k is chosen in
(3.26) because u p

: {1, uq
:{1 and u pq

: {1 when u:{1 by (3.24) and (3.25).
Again by (3.24) and (3.25), we obtain

P1(z)=P1*(z). (3.27)

Hence it follows from (3.13), (3.14), (3.23), (3.26), and (3.27) that

Hm, 1(z)=\ z p&1
pz& p+

k P1(z p)
P0(z)

,

Hn, 1(z)=\zq&1
qz&q+

k P1(zq)
P0(z)

,

Hm, 2(z)=\ z p&1
pz& p+

k P2(z p)
P1(z)

,

Hn, 2(z)=\zq&1
qz&q+

k P2(zq)
P1(z)

.

Substituting the above formulas of Hm, i and Hn, i , i=1, 2 in the first and
second equation of (3.12), we obtain

(1&zm)k P1(zm)
( p& pzd )k P0(zd )

B(z)=
(1&z p)k P2(z p)
( p& pz)k P1(z)

C(z p)

(1&zn)k P1(zn)
(q&qzd )k P0(zd )

B(z)=
(1&zq)k P2(zq)
(q&qz)k P1(z)

C(zq).
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Hence

(1&z p)k P2(z p)
(1&zm)k P1(zm)

C(z p)=
(1&zq)k P2(zq)
(1&zn)k P1(zn)

C(zq).

It is easy to prove that a rational polynomial Q satisfying Q(z p)=Q(zq) is
a constant polynomial. Therefore we have

C(z)=\1&zd

d&dz+
k P1(zd )

P2(z)
.

Replacing C(z) in (3.28) by the above formula, we get

B(z)=\1&zd

d&dz+
k P0(zd )

P1(z)
.

By the construction of Pi , i=0, 1, 2, these polynomials satisfy the required
properties of Lemma 6. K

Proof of Theorem 2. Let s be an integer such that s(n&1)�(m&1) is
still an integer and let ,=Bk( }&s�(m&1)). Then , is linearly independent
and

,� (!)=e&is!�(m&1) \1&e&i!

i! +
k

.

Thus we have

,� (!)=e&is!�m \ 1&e&i!

m&me&i!�m+
k

,� \ !
m+

and

,� (!)=e&is$!�n \ 1&e&i!

n&ne&i!�n+
k

,� \!
n+ ,

where s$=s(n&1)�(m&1). Hence , is m and n refinable. The necessity
follows.

Now we prove the sufficiency when the integer pair (m, n) be of type II.
Let pi , ri , si , i=1, 2 be nonnegative integers such that p1�2 and p2�2 are
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relatively prime, m= pr1
1 pr2

2 and n= p s1
1 ps2

2 . Without loss of generality we
assume r1s2>r2s1 . Set m$=nr1�ms1= p r1s2&r2s1

2 and n$=ms2�nr2= pr1 s2&r2s1
1 .

Then m$ and n$ are relatively prime. By the assumption on , and Lemma 2,
, is both m$ and n$ refinable. From Lemma 1 it follows that the m$ and n$
symbols Hm$ and Hn$ of , satisfy

Hm$ (z) Hn$ (zm$)=Hn$ (z) Hm$ (zn$). (3.29)

Write Hm$ (z)=zsH� m$ (z) and Hn$ (z)=zs$H� n$ (z), where H� m$ and H� n$ are
normalized polynomials. Then s$(m$&1)=s(n$&1), and H� m$ and H� n$

satisfy (3.29). Define ,� =,( }&s�(m$&1)). Then ,� is m$ and n$ refinable, and
its m$ and n$ symbols are H� m$ and H� n$ , respectively. By Lemma 3, we get

H� m$ (z)=\ 1&zm$

m$&m$z+
k P(zm$)

P(z)
,

where P is a normalized polynomial. Hence

,�� (!)=\1&e&i!

i! +
k

P(e&i!).

Obviously ,� is linearly dependent if the normalized polynomial P above
is not a constant. This proves P(z)=1 and ,� =Bk . It is obvious that
Bk( }&t), t # R is m refinable if and only if (m&1) t # Z. Hence the suf-
ficiency follows when the integer pair (m, n) is of type II.

At last we prove the sufficiency when the integer pair (m, n) is of type III.
Let pi , ri , si , i=1, 2, 3 be nonnegative integers such that p1 , p2 , p3�2
are pairwise relatively prime, m= pr1

1 pr2
2 p r3

3 and n= ps1
1 p s2

2 ps3
3 . Without loss

of generality we assume that r1 �s1>r2 �s2>r3 �s3 . Then , is nr1�ms1=
ps2r1&s1r2

2 ps3r1&s1s3
3 and ms3�nr3= pr1s3&r3s1

1 pr2s3&r3s2
2 refinable by Lemma 2 and

the assumption on ,. Hence after appropriately choosing pi , i=1, 2, 3,
we may assume that s1=r3=0 and r1=s3=1. For the above integer pair
(m

*
, n

*
)=( p1 pr2

2 , p s2
2 p3), set p= p s2

1 , q= pr2
3 , d= p r2s2

2 . Then m
*
s2= pd,

n
*
r2=qd and p, q, d are pairwise relatively prime. Furthermore , is pd and

qd refinable by Lemma 2. By the same argument as the one used in the
proof for the integer pairs of type II, it follows from Lemma 4 and the
linear independence of , that the pd symbol Hpd of , may be written as

Hpd (z)=zs \ 1&z pd

pd& pdz+
k

,

for some integers k�0 and s. Thus ,=Bk( }&s�( pd )). Hence the sufficiency
follows when the integer pair (m, n) is of type III. K
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4. PROOF OF THEOREM 3

To prove Theorem 3, we need the following lemma.

Lemma 7. Let m, n�2 be two integers, and let compactly supported
distribution , be both m and n refinable. Then there exist a compactly sup-
ported distribution ,1 and a sequence [d j] j # Z with finite length such that ,1

is linearly independent, both m and n refinable, and satisfies

,= :
j # Z

d j,1( }&j ). (4.1)

Proof. It is well known (see [7] for instance) that there exist a com-
pactly supported distribution ,1 and a sequence [dj] j # Z with finite length
such that (4.1) holds and ,1 is linearly independent. Then it suffices to
prove that ,1 are both m and n refinable. Set D(z)=� j # Z dj z j. Then by
taking the Fourier transform at each side of (4.1), we obtain

,� (!)=D(e&i!) ,� 1(!).

Hence by the m refinability of , and the linear independence of ,1 , we have

D(e&im!) ,� 1(m!)=Hm(e&i!) D(e&i!) ,� 1(!)

and Hm(z) D(z)�D(zm) is a Laurent polynomial. This shows that ,1 is m
refinable. Similarly we may prove that ,1 is also n refinable. K

Proof of Theorem 3. By Lemma 7, there exist a compactly supported
distribution ,1 and a sequence [dj] j # Z with finite length such that ,1 is
both m and n refinable, linearly independent and ,=� j # Z d j,1( }&j ). By
Theorem 2, there exist integers k�0 and s such that s(n&1)�(m&1) is still
an integer and ,1=Bk( }&s�(m&1)). Therefore

,= :
j # Z

d jBk \ }&j&
s

m&1+ . (4.2)

By taking the Fourier transform at each side of (4.2), we obtain

,� (!)=e&is!�(m&1) \1&e&i!

i! +
k

:
j # Z

dje&ij!.

Thus (1&z)k � j # Z dj z j is m and n closed by the m and n refinability
of ,. K
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Note added in proof. The conjecture in this paper is solved by X. Dai, Q. Sun, and
Z. Zhang in ``A Characterization of Compactly Supported Both m and n Refinable Distribu-
tion, II,'' forthcoming.
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